Supporting Information ## One-Step Synthesis of Single-Site Vanadium Substitution in $1T\text{-}WS_2$ Monolayers for Enhanced Hydrogen Evolution Catalysis Ali Han^{1,2#}, Xiaofeng Zhou^{1,3#}, Xijun Wang^{4#}, Sheng Liu⁵, Qihua Xiong⁶, Qinghua Zhang⁷, Lin Gu⁷, Zechao Zhuang,² Wenjing Zhang⁸, Fanxing Li⁴, Dingsheng Wang^{2*}, Lain-Jong Li^{1*}, Yadong Li² **Supplementary Fig. 1** Schematic models of single-layered MX_2 with 2H (a), 1T (b) and 1T' (c) phases in basal plane and the corresponding formation energies.¹ Supplementary Fig. 2 XRD patterns of V₂O₃ film and V SACs@1T-WS₂/V₂O₃ film. Supplementary Fig. 3 a-c, Optical micrographs of fresh sapphire (a), as-grown V_2O_3 film (b), $1T/V_2O_3$ film (c) by CVD. Scale bars: a-c, $60 \mu m$. **Supplementary Fig. 4 a,** High-resolution STEM image of monolayer 2H-WS₂. The blue spheres and yellow spheres represent the W atoms and S atoms, respectively, in the schematic model of 2H-WS₂ in Figure S4a. Scale bar: 0.5 nm. Inset: the corresponding Fast Fourier Transform (FFT) of Figure S4a. Scale bar: 5 1/nm; **b**, Intensity sequence profile of W-S-W (pink dashed arrow indicated by Figure S4a). **Supplementary Fig. 5** EELS spectra of S (a) and O (b) in the V SACs@1T-WS₂ monolayer. The carbon detection was associated with remaining PMMA polymer during the transferring process. Supplementary Fig. 6 a-b, Experimental (a) and simulated (b) STEM images of V SACs@1TWS2, respectively; c, Corresponding experimental (purple) and simulated (black dots) intensity sequence profiles of W-S-S-V-S-S-W (red dashed arrow) indicated by the STEM images. The white dashed circles represent the V atoms; d-e, Simulated STEM images of W_{vac}@1T-WS₂ with no S vacancy (d) and 2S vacancies (e). The purple dashed circles and yellow dashed circles represent the W_{vac} and S_{vac}, respectively; f-g, Simulated STEM images of 1T-WS₂ with 1S vacancy (f) and no S vacancy (g); h, Corresponding experimental (purple) intensity sequence profile of W-S-S-V-S-S-W (red dashed arrow) indicated by Figure S6a, simulated (orange dots) intensity sequence profiles of W-S-S-W_{vac}-S-S-W (red dashed arrow) indicated by the Figure S6d, simulated (pink dots) intensity sequence profiles of W-S-S_{vac}-W_{vac}-S_{vac}-S-W (red dashed arrow) indicated by the Figure S6e, simulated (olive dots) intensity sequence profiles of W-S-S-W-S-S_{vac}-W (red dashed arrow) indicated by the Figure S6f and simulated (blue dots) intensity sequence profiles of W-S-S-W-S-S-W (red dashed arrow) indicated by the Figure S6g. The blue spheres, red spheres and yellow spheres represent the W atoms, V atoms and S atoms, respectively. **Supplementary Fig. 7 a-b,** Experimental (a) and simulated (b) STEM images of V SACs@1T-WS₂, respectively. The white dashed circles represent the V atoms; **c,** Simulated STEM image of 1T-WS₂ with vacancies at W sites (W_{vac}@1T-WS₂). The purple dashed circles represent the vacancies at W sites; **d,** Corresponding intensity sequence profiles of W-W-V-W-W or W-W-W_{vac}-W-W indicated by the STEM images (yellow dashed arrow). The blue spheres, and red spheres in Figure S7a-7c represent the W atoms and V atoms, respectively. **Supplementary Fig. 8 a-b,** High-resolution HAADF-STEM images of monolayered V SACs@1T-WS₂ after annealing at 200 °C in air for 30 mins. The blue spheres, red spheres and yellow spheres represent the W atoms, V atoms and S atoms, respectively, in the schematic model of V SACs@2H-WS₂ in Figure S8b. The V atoms are highlighted by the white dashed circles. Please note that the V SACs@1T-WS₂ on the V_2O_3 film cannot be directly annealed in air, as V_2O_3 film will be transformed into VO_2 (M) above 300°C (see Figure S9). Scale bars: a, 1 nm; b, 0.5 nm. **Supplementary Fig. 9 a,** Raman spectra of 1T-V₂O₃ region with different annealing temperatures. 1T features in Raman spectra get relatively stable signals with the annealing temperature range from 25 °C to 300 °C in air; **b,** Raman spectra of V₂O₃ region with different annealing temperatures. The V₂O₃ film becomes VO₂ (M) at 400 °C in air for 5 mins; **c-d,** Optical micrographs of as-grown 1T-V₂O₃ phase on V₂O₃ film after annealing under different temperatures for 5 mins. 300 °C (c) and 400 °C (d). Scale bars: c-d, 10 μm. **Supplementary Fig. 10** Survey scan of V SACs@1T-WS₂ transferred on HOPG substrate. **Supplementary Fig. 11 a-d**, High-resolution XPS spectra of W 4f (a), S 2p (b), V 2p (c) and O 1s (d) core levels of V SACs@1T-WS₂ transferred on HOPG substrate. The fitting blue and pink curves represent the contributions of 1T and 2H phases in Fig. S11 a-b, respectively. The molar ratio of W/V obtained by the XPS analysis was ~95:5. b а W 4f **Supplementary Fig. 12** a-d, High-resolution XPS spectra of W 4f (a), S 2p (b), V 2p (c) and O 1s (d) core levels of V SACs@1T-WS₂ transferred on HOPG substrate for 15 times. The fitting blue and pink curves represent the contributions of 1T and 2H phases in Fig. S12 a-b, respectively. The molar ratio of W/V obtained by the XPS analysis was ~16:1. To exclude the possibility of VS₂ and V₂O₃/VO₂ contaminations in the transferred V SACs@1T-WS₂ monolayers, we transferred V SACs@1T-WS₂ monolayers on the HOPG substrate for the further XPS analyses. The survey scan and high-resolution XPS spectra of W 4f, S 2p, V 2p and O 1s were shown in Figure S10 and Figure S11, respectively. Except for the signals of W4f and S 2p, the V 2p signals were detected after a long-term acquisition time during the XPS scanning with much weaker intensity than W 4f (Fig. S11a) and S 2p (Fig. S11b), which should be caused by the low atomic density of V atoms in the 1T sample. After deconvoluting the V 2p signals, the peaks at 516.4 eV and 523.5 eV were assigned to V⁴⁺ from V-S bond in 1T sample.²⁻⁶ As the XPS technique was able to detect the surface of sample in 10 nm depth. To further verify the V signal in the 1T sample, we transferred the 1T samples on the same HOPG area for 15 times to acquire the XPS spectra. As shown in Figure S12c, an enhanced V 2p signal was observed, matching well with the V 2p signal in Figure S11c. Please note that if V-based materials were present in the transferred sample, a prominent V 2p peak should be detected. However, only weak V signals were detected, indicating no V-based contamination found in the transferred samples. Importantly, if the V-based contaminations (e.g. V_2O_3 , VO_2 , VS_2) were contained in the transferred 1T sample, obviously enhanced V/W molar ratio would be measured. However, the molar ratio of W/V was ~95:5 (Figure S11) or 16:1 (Figure S12) from the XPS analyses, which was close to the result obtained by the STEM image (~4 at%), further confirming the absence of V-based contaminations in the transferred 1T sample. In addition, only C-O bond at 532.4 eV (Figure S11d and S12d) or C=O bond at 533.9 eV (Figure S12d) were obtained and no V-O bond from vanadium oxidation (530.0 eV)⁷ was observed from the O 1s peak, further excluding the possibility of V₂O₃ or VO₂ in the transferred 1T sample. The C-O/C=O bonds should be caused by the slightly oxidation of HOPG on the surface during the transferring process. Supplementary Fig. 13 AFM imaging of pristine and transferred 1T-WS₂. a, topographic image of pristine V SACs@1T-WS₂ on V₂O₃/sapphire; b, pristine height profile; c, topographic image of transferred V SACs@1T-WS₂ on sapphire; d, Transferred height profile. Scale bars: a, 5 μ m; c, 5 μ m. **Optical image** Supplementary Fig. 14 Optical characterization of 1T and 2H phase. Optical micrograph and fluorescence of V SACs@1T-WS2 monolayer, 2H-WS2 monolayer and trapezoidal 1T/2H bilayer heterostructure (formed by stacking of a 1T monolayer and a 2H monolayer). Fluorescence image was taken with a color camera, showing a dark emission state of V SACs@1T-WS₂, and bright emission state of 2H-WS₂ and 1T/2H bilayer heterostructure junction. The exposure time was 2000 ms. **Supplementary Fig. 15 Optical characterization of 1T and 2H phase. a,** SHG intensity collected from V SACs@1T-WS₂, 2H-WS₂ and bilayer 1T/2H heterostructure samples on SiO₂/Si substrates, respectively; **b,** Raman spectra of monolayer V SACs@1T-WS₂ as a function of rotating angle; **c,** Polarization Raman intensity from V SACs@1T-WS₂ as a function of rotating angle. The polar pattern of the A_{1g} mode in the 1T phase was well fitted by a circle (orange solid line), which showed isotropic Raman scattering. After transferring these samples (monolayer V SACs@1T-WS₂, monolayer 2H-WS₂ and bilayer 1T/2H heterostructure) on SiO₂/Si substrate, the underlying crystal symmetry could be obtained by means of SHG. As shown in Figure S14, three regions can be observed via optical and fluorescence microscope. The fluorescent image indicates that 1T/2H heterostructure is identical to 2H-WS₂ monolayer, suggesting noncoupling between 1T and 2H phases. More importantly, the 1T sample produces no SHG signal (Figure S15a green plot), matching well with an octahedral prismatic coordination (D_{3d} group), in contrast to the evident SHG signals in the reported 1T' phase.⁸⁻¹⁰ Meanwhile, a broken inversion symmetry of the 2H-WS₂ (blue plot) and 1T/2H (red plot) induces an intense SHG, because of the trigonal prismatic coordination in 2H-WS₂ samples (D_{3h} group). The ARPRS of V SACs@1T-WS₂ was further performed by rotating laser polarization, as shown in Figure S15b. Moreover, Figure S15c proves the isotropic Raman scattering of V SACs@1T-WS₂, in which the polar pattern of the A_{1g} mode (red dashed spheres) is well fitted by a circle (orange solid line), confirming the 1T features of as-grown WS₂. It is worth noting that the ARPRS of 1T' TMD phase shows two-lobe pattern because of the non-centrosymmetric and anisotropic lattice structure^{8,10}. **Supplementary Fig. 16** Raman spectra of pure sapphire (black plot) and V_2O_3 film (red plot). The peak at 418.3 cm⁻¹ in the V_2O_3 film is derived from the A_{1g} mode of the substrate sapphire¹¹. The higher intensity merged peak in the range of 150~250 cm⁻¹ was correlation to both monoclinic A_{1g} and hexagonal V_2O_3 A_{1g} symmetry, indicative of a mixed phase. However, the additional peaks of low intensity at 300 cm⁻¹ and 500 cm⁻¹ were solely attributable to hexagonal $V_2O_3^{12,13}$, indicating the hexagonal structure of the as-grown V_2O_3 film. **Supplementary Fig. 17 a**, The Raman spectra of V_2O_3 film formed under different grown temperatures. Notably, no V_2O_3 film has been formed at the temperature \leq 500 °C; **b**, The Raman spectra of the powders in VCl₃ quart after reaction under different grown temperatures. From the Raman peaks positions, VCl₃ powder will firstly be decomposed as VO_2 (B)¹⁴. Then the VO_2 (B) will probably react with VO_2 to form the final VO_3 . We suggest the whole process for the VO_3 formation, as shown in the following equation (1) and (2). $$2xVC1_3+4WO_3+3xH_2=2xVO_2$$ (B) $+4WO_{3-x}+6xHC1$ (1) $$2VO_2(B) + H_2 = V_2O_3 + H_2O$$ (2) **Supplementary Fig. 18** Enlarged PL spectra of V_2O_3 film (black plot) and 1T-WS₂/ V_2O_3 film (orange plot). Supplementary Fig. 19 a, Survey scan of the V $SACs@1T-WS_2$ sample transferred on the sapphire substrate; b, High-resolution of XPS spectrum of O 1s. **Supplementary Fig. 20** Raman spectra of freshly prepared V SACs@1T-WS₂ sample on the V₂O₃ film (black plot) and after keeping for one year (red plot). **Supplementary Fig. 21 a,** Survey spectra of V SACs@1T-WS₂/V₂O₃ film grown on sapphire substrate after 1 year; **b-d,** High-resolution XPS spectra of V 3p (b), W 4f (b), S 2p (c), O 1s (d) and V 2p (d) core level peak regions. The fitting blue and pink curves represent the contributions of 1T and 2H phases in Fig. S21b-c, respectively. The wide-scan spectrum was shown in Fig. S21a and the main components are O, V, W, S, Al (from the sapphire). A high amount of 1T phase is still preserved even after one year (\sim 60%) from Fig. S21b, indicating the durable stability of 1T sample. Meanwhile, the V3p was found in Fig. S21b, which could not be used to analyze the V-base oxidation states caused by a complicated interaction between V3p and 3d electrons.⁷ However, three contributions were found in the V2p XPS spectrum, as shown in Fig. S21d: V3+, V4+, V5+, respectively, at 514.47 eV, 516.19 eV and 517.40 eV.⁷ The main component is V5+, which should be caused by the oxidation of V2O3 film on the surface in the air. The V4+ signal from V-S bond in the 1T sample was also involved due to the overlapped peak position of VS2 and VO2. Please note that no VO2 or V2O5 signals were detected by the Raman from Fig. S20 (red plot), which should be caused by overwhelming signals from 1T sample and V2O3 film on the surface of sample. **Supplementary Fig. 22** High resolution XPS spectra of W 4f (a) and S 2s (b) core level peak regions for 1T-200 °C, 1T-300 °C, 1T-400 °C samples. The fitting blue and pink curves represent the contributions of 1T and 2H phases, respectively. Please note that three pieces of 1T samples on the sapphire substrates were annealed at different temperatures in H₂/Ar for 2h. **Supplementary Fig. 23 a,** PL spectra of 2H-WS₂, V SACs@1T-WS₂, and V SACs@1T-WS₂ with different annealing temperatures in H₂/Ar for 2h; **b,** Enlarged PL spectra of V SACs@1T-WS₂ samples with different annealing temperatures. For all the V SACs@1T-WS₂ samples, the intensity of PL are almost completely suppressed, indicating the typical metallic behavior¹⁵. Meanwhile, compared with V SACs@1T-WS₂-200 °C sample and V SACs@1T-WS₂-300 °C sample, the PL intensity showed much higher intensity and blue shift in the V SACs@1T-WS₂-400 °C sample, which may be attributed to band-structure modification due to the partial 1T phase transformation to 2H phase. **Supplementary Fig. 24 a**, Raman spectra of pure sapphire (black), V₂O₃ film (olive) and V₂O₃-Nuclei film (blue); **b**, XRD spectra of V₂O₃-Nuclei film (blue), V₂O₃-No Nuclei film (orange) and V₂O₃ film (olive); **c**, Survey spectra of V₂O₃-Nuclei film on sapphire substrate; **d-f**, High-resolution XPS spectra showing the S 2p (d), Al 2p (e) and V 2p (f) core levels for the V₂O₃-Nuclei film on the sapphire substrate sample. Please note that V₂O₃-No Nuclei film was prepared using VCl₃ precursor only. The oxygen was deduced from the residue oxygen in the tube furnace. The Raman spectrum of V₂O₃ film (olive) in Fig. S24a was measured on the 1T/V₂O₃ sample where no WS₂ appeared. The XRD pattern in Fig. S24b (olive) was obtained on the 1T/V₂O₃ sample. The XRD analysis of different V_2O_3 films were conducted in the 2θ scanning mode, as shown in Figure S24b. All observed diffraction peaks have been indexed to the V_2O_3 (006), demonstrating the epitaxial growth of the single-crystalline V_2O_3 film on sapphire substrate. The high-resolution scans were made of V 2p, O1s, S 2p and Al 2p, as shown in Figure S24d-S24f, respectively. The V2p_{3/2} peak was found to be at 514.15 eV (Figure S24f), the value falls within the range of 513.0-516.8 eV found in literature for V₂O₃. ^{19,20} Moreover, the V2p_{3/2} peak at 516.12 eV was assigned to V⁴⁺ from VS₂. ^{21,22} In addition, the O1s peaks showed very good agreement with literature for O peak associated with V₂O₃ absorbed OH ions or H₂O, the peaks of which were within the range of 530.3-530.5 eV found in literature. ^{19,23} The S 2p peaks at 161.6 eV and 162.7 eV can be indexed to S 2p_{3/2} and S 2p_{1/2} for S²⁻, respectively, representing the VS₂ presence during the V₂O₃-Nuclei film deposition. ^{21,22,24} **Supplementary Fig. 25 a,** Elemental mapping of V_2O_3 -Nuclei film. The film was scratched from sapphire substrate for HRTEM measurement; **b,** EDX spectrum of V_2O_3 -Nuclei film. Scale bars: 40 nm. **Supplementary Fig. 26 a-b,** Optical micrographs of V_2O_3 -Nuclei film in the upstream (a) and downstream (b); **c,** Raman spectrum of V_2O_3 -Nuclei film in the downstream. The peak at 406.3 cm⁻¹ was assigned to VS_2 and different with the peak at 418.3 cm⁻¹, which was derived from the A_{1g} mode of the substrate sapphire¹¹. The recorded Raman peaks of VS_2 in Figure S26 were very weak, indicating that the amount of VS_2 was in very low concentration relative to V_2O_3 . Scale bars: a-b, 90 μ m. Supplementary Fig. 27 a, Optical micrograph of 1T domains formed on the V₂O₃-Nuclei film; b, Optical micrograph of 2H domains formed on the V₂O₃-No Nuclei film; c, Optical micrograph of fresh commercial V₂O₃ film; d, Optical micrograph of used commercial V₂O₃ film; e, Raman spectra of 1T domains formed on the V₂O₃-Nuclei film (black plot) and 2H domains formed on the V₂O₃-No Nuclei film (red plot); f, PL spectrum of 2H domains on the V₂O₃-No Nuclei film; g, Raman spectra of commercial V₂O₃ film before (black plot) and after (red plot) CVD growth. Scale bars: a-b, 10 μm. **Supplementary Fig. 28 a-b,** Raman mapping images of a 1T-WS₂ flake obtained in the J_1 (a) and E_{2g}^1 (b) vibrational modes, respectively. The measured WS₂ flake was grown on the V_2O_3 -Nuclei film substrate; **c-d,** Raman mapping images of a 2H-WS₂ flake obtained in the J_1 (c) and E_{2g}^1 (d) vibrational modes, respectively. The measured WS₂ flake was grown on the V_2O_3 -No Nuclei film substrate; **e-f,** Raman mapping image of the fresh commercial V_2O_3 film obtained in the E_{2g}^1 (WS₂) vibrational mode (e) and A_{1g} (V_2O_3) mode (f). Scale bars: a-d, 1 µm; e-f, 5 µm. **Supplementary Fig. 29** Raman spectra of the selected three points (A, B, C) on their respective substrates in Supplementary Fig. 28a, 28d and 28f, respectively. Raman mapping was directly conducted on the $WS_2@V_2O_3$ film to identify the 1T or 2H domains formed on the different V_2O_3 films, as shown in Supplementary Fig. 28. Fig. S28a-b and Fig. S28c-d are taken on 1T and 2H domain, respectively. Obviously, homogeneous signals from J_1 mode of 1T character were detected all over the domain (Fig. S28a), indicating the WS_2 domains grown on the V_2O_3 -Nuclei film were metallic 1T phase. The corresponding Raman spectrum of point A was displayed in Supplementary Fig. 29 (black plot), showing clear J_1 peak which only belongs to 1T metallic phase. The signals of E_{2g}^1 resonance modes of WS_2 were observed on both the domains formed on V_2O_3 -Nuclei film (Supplementary Fig. 28b) and V_2O_3 -No Nuclei film (Supplementary Fig. 28d), respectively, confirming the formation of WS_2 . However, no signals of J_1 mode were detected in the WS_2 domain formed on the V_2O_3 -No Nuclei film, indicating that the WS_2 domain was 2H semiconducting phase. The typical Raman spectrum taken at point B in Supplementary Fig. 29 (red plot) clearly demonstrated the absence of J_1 peak, further confirming the 2H phase. Moreover, as a contrast, the Raman mapping of fresh commercial V_2O_3 film was also carried out to identify the domains in Fig. S27c with different contrast. Apparently, no signals of E^1_{2g} resonance modes of WS₂ were detected in Supplementary Fig. 28e, indicating no WS₂ was formed on the surface. However, the signals of A_{1g} mode of V_2O_3 film was observed, demonstrating the V_2O_3 structure. **Supplementary Fig. 30 a,** Schematic Structures of 2H-WS₂, 1T-WS₂ and 1T-VS₂, respectively; **b,** Binding energy of 1T-VS₂/1T-WS₂ and 1T-VS₂/2H-WS₂. **Supplementary Fig. 31** Optical micrographs of as-prepared products using different amount of VCl₃. **a**, 0.01g; **b**, 0.02 g; **c**, 0.03 g; **d**, 0.05 g; **e**, 0.08 g; **f**, 0.10 g. T_1 =860 °C, T_2 = 160 °C, Ar/H_2 = 80 sccm/20 sccm, t = 15 min; T_1 refers to the heating temperature of the furnace, T_2 refers to the heating temperature of the sulfur powder, and t refers to the growth time. All the other experimental parameters are the same. Scale bars: 5 μ m. **Supplementary Fig. 32** The Raman spectra of as-prepared products using different amount of VCl₃. **Supplementary Fig. 33** The Raman spectra of as-prepared V₂O₃ film using different amount of VCl₃. The Raman spectra were measured on the areas where no WS₂ domains appeared. **Supplementary Fig. 34** High resolution XPS spectra of W 4f (a) and S 2s (b) core level peak regions for WS₂ domains using different amount of VCl₃. The fitting blue and pink curves represent the contributions of 1T and 2H phases, respectively. Please note that obtained WS₂ domains were transferred on the sapphire substrates for the XPS measurements. In order to demonstrate the amount of VCl₃ has a great impact on the phase purity of WS₂, we have prepared WS₂ samples using different amount of VCl₃ (from 0.01 g to 0.10 g). The corresponding optical micrographs and Raman spectra were shown in Supplementary Fig. 31-33. Apparently, when the amount of VCl₃ was 0.01 g, no WS₂ domains were formed on the sapphire substrate. As demonstrated in Supplementary Fig. 32 (black plot) and Supplementary Fig. 33 (black plot), the peaks that assigned to V₂O₃ were very weak, indicating the poor quality of V₂O₃ film. In addition, when the amount of VCl₃ was increased to 0.02 g, dominated 2H-WS₂ samples were formed on the surface of V_2O_3 film. Particularly, the characteristic metallic peaks of J_1 , J_2 and J_3 were gradually observed from Supplementary Fig. 32 (red plot). As demonstrated in the Fig. 4 in the revised manuscript, the 1T-VS₂ nuclei played important roles in determining the 1T-WS₂ phase growth. However, if the amount of VCl₃ was insufficient, it was deduced that only limited 1T-VS₂ nuclei were formed on the surface of V_2O_3 film to trigger the 1T-WS₂ growth. As a result, a low 1T/2H ratio of WS₂ were formed according to the XPS analysis (Supplementary Fig. 34). Prominent of J_1 , J_2 and J_3 peaks were clearly observed until the amount of VCl₃ was increased to 0.03 g, as shown in Supplementary Fig. 32 (blue plot). Simultaneously, high quality of V_2O_3 film was achieved if the VCl₃ amount was 0.03 g, as shown in Supplementary Fig. 33 (blue plot) and Supplementary Fig. 16 in the revised supplementary information. Appropriate formation of VS₂ nuclei and high quality of V_2O_3 were in favor of the epitaxial growth of 1T-WS₂ monolayers with high quality (Fig. 3c, 91% 1T-WS₂). However, it was found than if the amount of VCl₃ was in the range of $0.05 \, \text{g} \sim 0.08 \, \text{g}$, no typical metallic peaks were observed from the Raman spectra in Supplementary Fig. 32 (olive and purple plots). Only 2H-WS₂ domains were formed, which were further corroborated by the XPS analyses (Supplementary Fig. 34). Moreover, it was believed that the large amount of VCl₃ could result in the high density of VOx vapor phase during the heating process, which could significantly accelerate the deposition rate of V₂O₃ film, leading to a V₂O₃ film with rough surface. Particularly, poor quality of V₂O₃ films were achieved when the amount of VCl₃ was in the range of $0.05 \, \text{g} \sim 0.08 \, \text{g}$, as shown in Supplementary Fig. 33 (olive and purple plots). Moreover, no WS₂ domains were formed if the amount of VCl₃ was $\sim 0.1 \, \text{g}$ due to the extremely rough surface of V₂O₃ film. From the analysis of the influence of amount of VCl₃ on the purity of 1T-WS₂, we can conclude that the quality of V₂O₃ film was the constraining factor to determine the formation of 1T-WS₂ with high phase purity when the amount of VCl₃ was higher than $0.03 \, \text{g}$. Whereas, the density of VS₂ nuclei was the constraining factor to impact the 1T-WS₂ formation when the amount of VCl₃ was less than $0.03 \, \text{g}$. **Supplementary Fig. 35** 1T-WS₂ domains prepared at different heating temperatures (T₁). **a**, T₁=840 °C; **b**, T₁=850 °C; **c**, T₁=860 °C; **d**, T₁=865 °C. T₁ refers to the heating temperature of the furnace, T₂ refers to the heating temperature of the sulfur powder, and t refers to the growth time. All the other experimental parameters are the same except T₁. T₂ = 160 °C, Ar/H₂ = 80 sccm/20sccm, t = 15 min. Scale bars: 10 μ m. **Supplementary Fig. 36** The Raman spectra of WS₂ domain prepared at different heating temperatures of furnace. **Supplementary Fig. 37** STEM images of V SACs@1T-WS₂ monolayers prepared at different heating temperatures. Single V atoms are marked by the white dashed circles. Scale bars: 1 nm. As expected, the WS₂ samples with different lateral sizes were formed under the different heating temperatures in Supplementary Fig. 35. Impressively, the typical metallic peaks (J₁, J₂, J₃) were all observed in the Raman spectra of Supplementary Fig. 36, indicative of the formation of 1T-WS₂. Moreover, the atomic structures of corresponding V SACs@1T-WS₂ samples were shown in Supplementary Fig. 37, which manifested the 1T structures of WS₂. In particular, the single V atoms were 8.0 at% (4.0 wt%), 5.0 at% (2.5 wt%), 4.0 at% (2.0 wt%) and 4.2 at% (2.1 wt%), respectively, when changing the heating temperatures from 840 °C to 865 °C, revealing that the V concentration in the 1T-WS₂ monolayers could be tuned by the heating temperature. **Supplementary Fig. 38 a,** Optical micrograph of 1T-WS₂ domains obtained using vanadocene (0.08 g) as the co-precursors. T_1 =860 °C, T_2 = 160 °C, Ar/H_2 = 80 sccm/20 sccm, t = 15 min; T_1 refers to the heating temperature of the furnace, T_2 refers to the heating temperature of the sulfur powder, and t refers to the growth time; **b,** STEM image of obtained V SACs@1T-WS₂ monolayer. The single V atoms are marked by the white dashed circles; **c,** Raman spectra of $1T/V_2O_3$ (black plot) and V_2O_3 film (red plot), respectively; **d,** PL spectrum of $1T/V_2O_3$ film. Scale bars: a, 20 μ m; b, 1 nm. Apparently, 1T-WS₂ domains were also achieved if using vanadocene as the coprecursors. However, it required higher amount of vanadocene (0.08 g) to obtain the 1T-WS₂ domains. The characterizations of V SACs@1T-WS₂ monolayers were shown in Supplementary Fig. 38. From the optical micrograph, the obtained 1T-WS₂ monolayers showed similar morphology with Fig. 2b. The atomic structure of V SACs@1T-WS₂ was displayed in Supplementary Fig. 38b, confirming the 1T phase of WS₂. The typical metallic peaks were prominently seen in the Raman spectrum (Supplementary Fig. 38c), indicative of the metallic feature of WS₂ domains. Moreover, the negligible PL intensity of obtained WS₂ domains was also provided to demonstrate the metallic nature (Supplementary Fig. 38d). It was reported that vanadocene could be completely decomposed at less than 200 °C under a H₂ atmosphere,²⁵ so it was easier to transport in the gaseous state than VCl₃ during the heating temperature. As a result, it required higher amount of vanadocene to obtain the 1T-WS₂ domains. Supplementary Fig. 39 a, Picture of $1T/V_2O_3$ film grown on sapphire substrate with different growth regions. Region A represents the V_2O_3 film without 1T sample. Represent B represents the V_2O_3 film with isolated 1T flakes. Region D represents the very downstream area, which was not able to grow V_2O_3 film and WS_2 sample on the surface; **b**, Stitching optical micrograph of the interface between region A and region B. Please note that region B and region C are the main products, stitching optical micrograph was carried out for the clear observation of the morphology (see Fig. S40). Scale bar: b, $300 \ \mu m$. Supplementary Fig. 40 Stitching optical micrograph of as-grown 1T-WS₂ monolayers on the surface of V_2O_3 /sapphire. Please note that the stitching area was selected from the interface between region B and Region C in the Fig. S39a. Scale bar: 500 μ m. The isolated flakes (right white arrow) in growth region B have domain sizes from $20{\sim}30~\mu m$. On the left side in growth region C, the WS₂ domains are merged into a continuous film. This kind of non-uniformity in nucleation density and domain size is a limitation of the present CVD technique, which have been demonstrated in many previously reported literatures about TMDs grown on ${\rm Si/SiO_2}^{26,27}$, quartz²⁸ and sapphire substrates²⁹⁻³¹. As a result, it is inevitable to grow isolated and merged film domains in our CVD process for 1T monolayers growth. However, each growth contained ~0.5 cm x 2.0 cm (~1.0 cm²) region where hundreds of isolated flakes grown and ~0.5 cm x 1.0 cm (~0.5 cm²) region where merged 1T film grown. **Supplementary Fig. 41 a-d,** STEM images of V SACs@1T-WS₂ merged film grown in region C. Single V atoms are marked by the white dashed circles. The STEM images were randomly taken from six different areas; **e,** Intensity sequence profiles of W-S-S-V-S-S-W (orange dashed arrow indicated by Figure S41a-d). Scale bars: 1 nm. Supplementary Fig. 42 Raman spectrum of 1T merged film/ V_2O_3 in growth region C. **Supplementary Fig. 43 a,** Low-resolution cross-section HAADF-STEM image of V SACs@1T-WS₂ merged film on the surface of V₂O₃ film/sapphire substrate; **b,** High-resolution HAADF-STEM image of V SACs@1T-WS₂ monolayer film on the V₂O₃ surface; **c,** High-resolution HAADF-STEM image of the interface between V₂O₃ and sapphire substrate. Scale bars: a, 10 nm; b-c, 0.5 nm. The characterizations of V SACs@1T-WS₂ merged film in growth region C were shown in Supplementary Fig. 41-43. The atomic structure of V SACs@1T-WS₂ merged film were shown in Fig. S41. The images were randomly taken from four different areas in region C. The 1T phase of WS₂ was confirmed with V atoms distribution from the high-resolution STEM images. In particular, the average single V atoms was ~4.1 at% (2.1 wt%), which was close to the atomic density of V atoms in the growth region B (Fig. 2c, ~2.0 wt%). The W-S-S-V-S-S-W intensity profile sequences were also achieved to identify the V atoms replacement at W sites, as shown in Fig. S41e. The typical metallic peaks were shown in the Raman spectrum (Supplementary Fig. 42), confirming the metallic feature of WS₂ sample. The monolayer thickness was confirmed by cross-sectional STEM images in Fig. S43. Supplementary Fig. 44 Six representative optical micrographs taken from Fig. S40. Scale bars: $50 \mu m$. To transfer the 1T samples for the investigation of HER catalytic performance, we transferred the samples at the region B (near the interface between region B and C). However, it was inevitable to transfer a small part of 1T merged film onto the glassy carbon electrode. To acquire a relatively accurate geometric area, we made statistics for the real geometric area of 1T samples. Please see details in Fig. S45 and Table S4-S6 **Supplementary Fig. 45 a-c,** Statistics of WS₂ distribution with different lateral sizes in Fig. S44d (a), Fig. S44e (b) and Fig. S44f (c), respectively. **d,** the calculated $A_{WS_2}/A_{sub.}$ ratio in the respective Figs. In order to evaluate the actual area of WS₂ monolayers more accurately, we made statistics for the actual area of 1T-WS₂ monolayers in Fig. S44, which was taken from stitching optical images in Fig. S40. A_{WS_2} represents the area of WS₂ monolayers in the respective picture. A_{sub} represents the area of respective picture. The stitching optical micrograph of WS2 indicated that the as-grown WS2 monolayers included both continuous film and isolated WS₂ monolayers. The continuous film was formed on the relatively down-stream of isolated WS2 monolayers. Six representative areas were selected for the statistical analyses in Fig. S44. The largest A_{WS_2}/A_{sub} ratio in these Figs was ~1.0 from Fig. S44a due to the approximately continuous film. As for the Fig. S44b-44c, the ratio of A_{WS_2}/A_{sub} was apparently less than 1.0. Compared with Fig. S44a-S44c, the relatively lower ratios of A_{WS_2}/A_{sub} were shown in Fig. S44d-S44f according to the lower distribution density of WS₂ monolayers. To obtain the accurate A_{WS_2}/A_{sub} ratios of Fig. S44d-44e, the diameter distribution range of WS₂ monolayers was obtained by average diameter analysis software. The corresponding distribution sizes of WS2 monolayers were displayed in Fig. S45a-S45c. According to the calculated area results in Table S4-S6. The A_{WS_2}/A_{sub} ratios were 0.26, 0.27 and 0.28, respectively. We take the mean value of 0.27 as the lowest A_{WS_2}/A_{sub} ratio. Consequently, the actual mass loading of WS₂ monolayers was in the range of 1.8~6.5 $\mu g/cm^2$. The mass loading of continues WS_2 film was calculated according to the equation as follows: Mass loading of $$WS_2 = \frac{m_{WS_2}}{A_{sub.}} = \frac{\rho_{WS_2}V_{WS_2}}{A_{sub.}} = \frac{\rho_{WS_2}A_{WS_2}H_{WS_2}}{A_{sub.}} = \rho_{WS_2}H_{WS_2}$$ m_{WS_2} , ρ_{WS_2} , V_{WS_2} , H_{WS_2} represent the mass amount of WS₂, density of WS₂, volume of WS₂, and monolayer thickness of WS₂, respectively. **Supplementary Fig. 46** HER performance comparison for the various catalysts with different mass loadings (the catalysts include strained 1T'-WS₂,³² 1T'-MoS₂ nanosheets,³³ 1T'-MoS₂ monolayers,⁹ 1T' WSe₂,³⁴ 2H-1T boundary MoS₂,³⁵ vacancy sites-2H MoS₂,³⁶ 1T-MoS₂ nanosheets,³⁷ P-1T-MoS₂,³⁸ (N,PO₄³⁻)-1T-MoS₂,³⁹ SA Co-D-1T-MoS₂,⁴⁰ SA Ni-2H-MoS₂,⁴¹ SA Rh-2H-MoS₂,⁴² PE-CVD 1T-WS₂⁴³). The red dashed circles represent the 1T(1T')-W based TMDs. **Supplementary Fig. 47** Voltammograms of (a) V SACs@1T-WS₂ and (c) 2H-WS₂ electrocatalysts at various scan rates ($10 \sim 210 \text{ mV/s}$); Electrochemically active surface area (b) V SACs@1T-WS₂ and (d) 2H-WS₂ estimated from the voltammograms at various scan rates ($10 \sim 210 \text{ mV/s}$). **Supplementary Fig. 48** Chronoamperometric curve of V SACs 1T-WS₂ catalyst at an overpotential of 400 mV in 0.5 M H₂SO₄ electrolyte. **Supplementary Fig. 49** Raman spectra (a) and STEM image (b) of V SACs 1T-WS₂ catalyst after stability test. The V SACs 1T-WS₂ catalyst after stability test was transferred on the sapphire substrate and TEM grid for the Raman spectrum and STEM measurements, respectively. The white dashed circles represent the V SACs. Scale bar: 1 nm. **Supplementary Fig. 50** Model structures of the 25% H-covered surface sites of 2H-WS₂ (a), V SACs@2H-WS₂ (b) and V SACs@1T-WS₂ (c). Since it has been demonstrated that 25% hydrogen coverage is the optimal coverage in terms of H binding for 1T-MoS₂,⁴⁴ here both non- and 25% H coverage was considered for the basal plane sites of the three studied phases. **Supplementary Fig. 51** Model structure of H adsorption on S edge sites of 2H-WS₂ with corresponding adsorption energy. **Supplementary Fig. 52** Model structure of H adsorption on (a) S and (b) V edge sites of V SACs@2H-WS₂ with corresponding adsorption energies. Supplementary Fig. 53 Model structure of H adsorption on (a) S and (b) V edge sites of V SACs@1T-WS $_2$ with corresponding adsorption energies. **Supplementary Table 1.** Comparison of the concentration of metallic MX_2 (MoS₂ or WS₂) via different strategies. | Catalysts | Synthesis strategy | 1T phase content | 1T' phase content | References | |---------------------------------------------------------|----------------------------------------------------|------------------|-------------------|-------------------------------------------| | V SACs@1T-WS ₂ | One-step CVD | 91% | - | In this work | | Strained
1T' WS ₂ | Liquid phase exfoliated | - | 80% | Nat. Mater. 2013, 12 (9), 850-855. | | 1T'- MoS ₂ | Gas sulfidation plus I ₂ treatment | - | 90% | Nat. Chem. 2018. 10, 638–643 | | 1T'-MoS ₂ | One-step CVD | - | 90% | Nat. Mater. 2018. 17. 1108. | | 1T'-MoS ₂ | Liquid phase exfoliated | - | 97% | Adv. Mater. 2019, 1900568 | | 1T-MoS ₂ | CVD plus post-
exfoliated treatment | 80% | - | J. Am. Chem. Soc. 2013,
135, 10274 | | 1T'-MoS ₂ | Exfoliated synthesis plus I ₂ treatment | - | - | Nano Lett. 2013, 13, 12, 6222-6227 | | P-1T-MoS ₂ | Liquid phase exfoliated | 82% | - | J. Am. Chem. Soc. 2016,
138, 7965-7972 | | (N, PO ₄ ³⁻)-1T-MoS ₂ | Hydrothermal | 41% | - | Angew. Chem. Int. Ed. 2019, 58,2 – 10 | | 1T-MoS ₂ /NiS ₂ | Hydrothermal | 83% | - | Angew. Chem. Int. Ed. 2019, 58,1 – 5 | | 1T-MoS ₂ | Liquid phase exfoliation | 70% | - | Nat. Nanotech. 2015, 10, 313. | **Supplementary Table 2.** W4 $f_{7/2}$ ratios of 1T and 2H under different annealing temperature. Relative percentages of 1T and 2H species obtained by integration of the W4 $f_{7/2}$ peak for the four samples described in the main text Figure 3c and Supplementary Fig. S22 | WS ₂ samples | | 1T (W4f) | 2H (W4f) | |-------------------------|----------|----------|----------| | Not
(25 °C) | annealed | 91% | 9% | | 200 °C | | 90% | 10% | | 300 °C | | 66% | 34% | | 400 °C | | 49% | 51% | **Supplementary Table 3.** Computed lattice parameters of 2H-WS₂, V SACs@2H-WS₂ and V SACs@1T-WS₂. | Samples | а | b | α | β | γ | |---------------------------|-------|-------|-------|-------|--------| | 2H-WS ₂ | 12.62 | 12.62 | 90 | 90 | 120 | | V SACs@2H-WS ₂ | 12.65 | 12.65 | 90 | 90 | 120 | | V SACs@1T-WS ₂ | 12.97 | 12.97 | 89.78 | 90.22 | 120.97 | ^{*}To simplify the model, we apply V%=6.25% (W:V=15:1) **Supplementary Table 4.** Statistics of WS₂ distribution with different lateral sizes in Supplementary Fig. 44d and the corresponding areas. | Diameter Distribution (μm) | Mean diameter
(µm) | Amount | Freq. | Area (µm²) | |--|-----------------------|--------|-------|------------| | 11-13.4 | 12.2 | 1 | 1.1% | 116.8 | | 13.4-15.8 | 14.6 | 8 | 8.7% | 1338.6 | | 15.8-18.2 | 17 | 10 | 10.9% | 2268.7 | | 18.2-20.6 | 19.4 | 16 | 17.4% | 4727.1 | | 20.6-23 | 21.8 | 22 | 23.9% | 8207.4 | | 23-25.4 | 24.2 | 15 | 16.3% | 6895.9 | | 25.4-27.8 | 26.6 | 9 | 9.8% | 4998.9 | | 27.8-30.2 | 29 | 5 | 5.4% | 3300.9 | | 30.2-32.6 | 31.4 | 3 | 3.3% | 2321.9 | | 32.6-35 | 33.8 | 3 | 3.3% | 2690.4 | | Total Area of WS₂ monolayers in Supplementary Fig. 44d | | | | 36866.6 | ^{*}To calculate the area of WS₂ monolayers, we assume each WS₂ monolayer was circular and the mean diameter value represents the diameter (d) of circular. The area of each WS₂ monolayer was calculated according to the equation as follows: Area of $$WS_2monolayer = \pi r^2 = \frac{1}{4}\pi d^2$$ **Supplementary Table 5.** Statistics of WS₂ distribution with different lateral sizes in Supplementary Fig. 44e and the corresponding areas. | Diameter Distribution (μm) | Mean diameter
(µm) | Amount | Freq. | Area (µm²) | |----------------------------|--|--------|-------|------------| | 10-13.1 | 11.55 | 1 | 1.3% | 104.7 | | 13.1-16.2 | 14.65 | 4 | 5.3% | 673.9 | | 16.2-19.3 | 17.75 | 8 | 10.5% | 1978.6 | | 19.3-22.4 | 20.85 | 15 | 19.7% | 5118.9 | | 22.4-25.5 | 23.95 | 15 | 19.7% | 6754.2 | | 25.5-28.6 | 27.05 | 17 | 22.4% | 9764.6 | | 28.6-31.7 | 30.15 | 8 | 10.5% | 5708.7 | | 31.7-34.8 | 33.25 | 4 | 5.3% | 3471.5 | | 34.8-37.9 | 36.35 | 3 | 3.9% | 3111.7 | | 37.9-41 | 39.45 | 1 | 1.3% | 1221.7 | | Total Area of W | Total Area of WS₂ monolayers in Supplementary Fig. 44e | | | | **Supplementary Table 6.** Statistics of WS_2 distribution with different lateral sizes in Supplementary Fig. 44f and the corresponding areas | Diameter Distribution (μm) | Mean diameter
(µm) | Amount | Freq. | Area (µm²) | |--|-----------------------|--------|-------|------------| | 13-15.3 | 14.15 | 1 | 1.2% | 157.2 | | 15.3-17.6 | 16.45 | 6 | 7.4% | 1274.5 | | 17.6-19.9 | 18.75 | 6 | 7.4% | 1655.9 | | 19.9-22.2 | 21.05 | 14 | 17.3% | 4869.7 | | 22.2-24.5 | 23.35 | 11 | 13.6% | 4708.0 | | 24.5-26.8 | 25.65 | 18 | 22.2% | 9296.4 | | 26.8-29.1 | 27.95 | 17 | 21.0% | 10425.1 | | 29.1-31.4 | 30.25 | 3 | 3.7% | 2155.0 | | 31.4-33.7 | 32.55 | 3 | 3.7% | 2495.1 | | 33.7-36 | 34.85 | 2 | 2.5% | 1906.8 | | Total Area of WS₂ monolayers in Supplementary Fig. 44f | | | | 38943.7 | **Supplementary Table 7.** TOF values comparisons of representative electrocatalysts at different overpotentials in 0.5 M H₂SO₄. | Electrocatalysts | Overpotential (mV) | TOF value (s ⁻¹) | References | |-------------------------------------|--------------------|------------------------------|---| | V SACs@1T-WS ₂ | 100 | 3.01 | In this work | | V SACs@1T-WS ₂ | 150 | 12.78 | In this work | | V SACs@1T-WS ₂ | 200 | 24.15 | In this work | | SA Co-D-1T MoS ₂ | 200 | ~19.0 | Nat. Commun. 2019, 10, 5231 | | SA Co-HOPNC | 200 | 3.8 | Proc. Natl. Acad. Sci. USA 2018, 115, 12692. | | SA Co-P ₁ N ₃ | 100 | 1.6 | J. Am. Chem. Soc. 2020, 142,
8431-8439 | | SA Co-P ₁ N ₃ | 150 | 6.34 | J. Am. Chem. Soc. 2020, 142,
8431-8439 | | Mo SAC | 150 | 1.46 | Angew. Chem. Int. Ed. 2017, 56, 16086. | | P-1T-MoS ₂ | 153 | 0.5 | J. Am. Chem. Soc. 2016, 138, 7965 | | MoP | 150 | 0.19 | Angew. Chem. Int. Ed., 2014, 53, 14433-14437. | ^{*} TOF values were calculated using the mass loading of 6.5 µg/cm². Supplementary Table 8. Computed free energies of H adsorption ($|\Delta G_H|$) on surface, S and W/V edge sites for various species. | IAC 1 (a)() | Surface site | S Edge site | W Edge site | V Edge site | |------------------------|----------------------|-------------|--------------|-------------| | ΔG _H (eV) | Surface site | 3 Euge site | vv Eage site | v Euge site | | | (basal plane) | | | | | 2H-WS ₂ | 1.80 | 0.78 | 0.86 | - | | V SACs@2H-W | /S ₂ 1.56 | 0.30 | 0.54 | 0.13 | | V SACs@1T-W | /S ₂ 0.40 | 0.21 | 1.01 | 0.05 | ## References - Duerloo, K.-A. N., Li, Y. & Reed, E. J. Structural phase transitions in two-dimensional Mo-and W-dichalcogenide monolayers. *Nat. Commun.* **5**, 4214 (2014). - 2 Gao, D. *et al.* Ferromagnetism in ultrathin VS₂ nanosheets. *J. Mater. Chem. C* 1, 5909-5916 (2013). - Green, C. L. & Kucernak, A. Determination of the Platinum and Ruthenium Surface Areas in Platinum-Ruthenium Alloy Electrocatalysts by Underpotential Deposition of Copper. I. Unsupported Catalysts. *J. Phys. Chem. B* **106**, 1036-1047 (2002). - Wang, Y., Sofer, Z., Luxa, J. & Pumera, M. Lithium Exfoliated Vanadium Dichalcogenides (VS₂, VSe₂, VTe₂) Exhibit Dramatically Different Properties from Their Bulk Counterparts. *Adv. Mater. Interfaces* **3**, 1600433 (2016). - Zhou, J. *et al.* Hierarchical VS₂ Nanosheet Assemblies: A Universal Host Material for the Reversible Storage of Alkali Metal Ions. *Adv. Mater.* **29**, 1702061 (2017). - Yu, S. H. *et al.* In Situ Hybridizing MoS₂ Microflowers on VS₂ Microflakes in a One-Pot CVD Process for Electrolytic Hydrogen Evolution Reaction. *ACS Appl. Energy Mater.* **2**, 5799-5808 (2019). - 7 Silversmit, G. *et al.* A comparative XPS and UPS study of VOx layers on mineral TiO₂ (001)-anatase supports. *Surf. Interface Anal.* **38**, 1257-1265 (2006). - Beams, R. *et al.* Characterization of Few-Layer 1T' MoTe₂ by Polarization-Resolved Second Harmonic Generation and Raman Scattering. *ACS Nano* **10**, 9626-9636 (2016). - 9 Liu, L. *et al.* Phase-selective synthesis of 1T' MoS₂ monolayers and heterophase bilayers. *Nat. Mater.* **17**, 1108-1114 (2018). - Wang, Y. *et al.* Structural phase transition in monolayer MoTe₂ driven by electrostatic doping. *Nature* **550**, 487 (2017). - Munisso, M. C., Zhu, W. & Pezzotti, G. Raman tensor analysis of sapphire single crystal and its application to define crystallographic orientation in polycrystalline alumina. *Phys. Status Solidi B* **246**, 1893-1900 (2009). - Kafizas, A., Hyett, G. & Parkin, I. P. Combinatorial atmospheric pressure chemical vapour deposition (cAPCVD) of a mixed vanadium oxide and vanadium oxynitride thin film. *J. Mater. Chem.* **19**, 1399-1408 (2009). - Kuroda, N. & Fan, H. Y. Raman scattering and phase transitions of V₂O₃. *Phys. Rev. B* **16**, 5003-5008 (1977). - 14 Xu, H. F., Liu, Y., Wei, N. & Jin, S. W. From VO₂(B) to VO₂(A) nanorods: Hydrothermal synthesis, evolution and optical properties in V₂O₅H₂C₂O₄H₂O system. *Optik* **125**, 6078-6081 (2014). - Voiry, D. *et al.* Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. *Nat. Chem.* 7, 45-49 (2015). - Allimi, B. S. *et al.* Growth of V₂O₃ thin films on a-plane (110) and c-plane (001) sapphire via pulsed-laser deposition. *J. Mater. Res.* **22**, 2825-2831 (2007). - 17 Sakai, J., Limelette, P. & Funakubo, H. Transport properties and c/a ratio of - V₂O₃ thin films grown on C- and R- plane sapphire substrates by pulsed laser deposition. *Appl. Phys. Lett.* **107**, 241901 (2015). - Sun, G., Cao, X., Long, S., Li, R. & Jin, P. Optical and electrical performance of thermochromic V₂O₃ thin film fabricated by magnetron sputtering. *Appl. Phys. Lett.* **111**, 053901 (2017). - Allimi, B. S. *et al.* Resistivity of V₂O₃ thin films deposited on a-plane (110) and c-plane (001) sapphire by pulsed laser deposition. *Appl. Phys. Lett.* **92**, 202105 (2008). - Nag, N. K. & Massoth, F. E. ESCA and gravimetric reduction studies on V/Al₂O₃ and V/SiO₂ catalysts. *J. Catal.* **124**, 127-132 (1990). - Liang, H. *et al.* Solution Growth of Vertical VS₂ Nanoplate Arrays for Electrocatalytic Hydrogen Evolution. *Chem. Mater.* **28**, 5587-5591 (2016). - Yuan, J. *et al.* Facile synthesis of single crystal vanadium disulfide nanosheets by chemical vapor deposition for efficient hydrogen evolution reaction. *Adv. Mater.* **27**, 5605-5609 (2015). - Colton, R. J., Guzman, A. M. & Rabalais, J. W. Electrochromism in some thinfilm transition-metal oxides characterized by x-ray electron spectroscopy. *J. Appl. Phys.* **49**, 409-416 (1978). - Ahmed, S. *et al.* Inducing High Coercivity in MoS₂ Nanosheets by Transition Element Doping. *Chem. Mater.* **29**, 9066-9074 (2017). - Poirier, L. *et al.* Thermal behavior of vanadocene. *J. Anal. Appl. Pyrolysis* **36**, 121-136 (1996). - 26 Chow, P. K. *et al.* Wetting of Mono and Few-Layered WS₂ and MoS₂ Films Supported on Si/SiO₂ Substrates. *ACS Nano* **9**, 3023-3031 (2015). - van der Zande, A. M. *et al.* Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. *Nat. Mater.* **12**, 554-561 (2013). - Perea-López, N. *et al.* Photosensor Device Based on Few-Layered WS₂ Films. *Adv. Funct. Mater.* **23**, 5511-5517, doi:10.1002/adfm.201300760 (2013). - Zhang, Q. *et al.* Reliable Synthesis of Large-Area Monolayer WS₂ Single Crystals, Films, and Heterostructures with Extraordinary Photoluminescence Induced by Water Intercalation. *Adv. Optical Mater.* **6**, 1701347 (2018). - Ji, Q. *et al.* Unravelling Orientation Distribution and Merging Behavior of Monolayer MoS₂ Domains on Sapphire. *Nano Lett.* **15**, 198-205 (2015). - Yu, H. *et al.* Wafer-Scale Growth and Transfer of Highly-Oriented Monolayer MoS₂ Continuous Films. *ACS Nano* **11**, 12001-12007 (2017). - Voiry, D. *et al.* Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution. *Nat. Mater.* **12**, 850-855 (2013). - Yu, Y. *et al.* High phase-purity 1T'-MoS₂- and 1T'-MoSe₂-layered crystals. *Nat. Chem.* **10**, 638-643 (2018). - 34 Sokolikova, M. S., Sherrell, P. C., Palczynski, P., Bemmer, V. L. & Mattevi, C. Direct solution-phase synthesis of 1T' WSe₂ nanosheets. *Nat. Commun.* **10**, 712 (2019). - Zhu, J. *et al.* Boundary activated hydrogen evolution reaction on monolayer MoS₂. *Nat. Commun.* **10**, 1348 (2019). - Wang, X. et al. Single-Atom Vacancy Defect to Trigger High-Efficiency Hydrogen Evolution of MoS₂. J. Am. Chem. Soc., doi:10.1021/jacs.9b12113 (2020). - Lukowski, M. A. *et al.* Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS₂ Nanosheets. *J. Am. Chem. Soc.* **135**, 10274-10277 (2013). - 38 Yin, Y. *et al.* Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets. *J. Am. Chem. Soc.* **138**, 7965-7972 (2016). - Deng, S. *et al.* Synergistic Doping and Intercalation: Realizing Deep Phase Modulation on MoS₂ Arrays for High-Efficiency Hydrogen Evolution Reaction. *Angew. Chem. Int. Ed.* **58**, 16289-16296 (2019). - 40 Qi, K. *et al.* Single-atom cobalt array bound to distorted 1T MoS₂ with ensemble effect for hydrogen evolution catalysis. *Nat. Commun.* **10**, 5231 (2019). - Zhang, H., Yu, L., Chen, T., Zhou, W. & Lou, X. W. Surface Modulation of Hierarchical MoS₂ Nanosheets by Ni Single Atoms for Enhanced Electrocatalytic Hydrogen Evolution. *Adv. Funct. Mater.* **28**, 1807086 (2018). - Meng, X. et al. Distance synergy of MoS₂-confined Rh atoms for highly efficient hydrogen evolution. *Angew. Chem. Int. Ed.*, doi:10.1002/anie.202003484 (2020). - Kim, H.-U. *et al.* Wafer-Scale and Low-Temperature Growth of 1T-WS₂ Film for Efficient and Stable Hydrogen Evolution Reaction. *Small* **16**, 1905000 (2020). - Tang, Q. & Jiang, D.-e. Mechanism of Hydrogen Evolution Reaction on 1T-MoS₂ from First Principles. *ACS Catal.* **6**, 4953-4961 (2016).